skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ojha, Abhishek"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the problem of performing inference for a continuous treatment effect on a binary outcome variable while controlling for high dimensional baseline covariates. We propose a novel Bayesian framework for performing inference for the desired low-dimensional parameter in a high-dimensional logistic regression model. While it is relatively easier to address this problem in linear regression, the nonlinearity of the logistic regression poses additional challenges that make it difficult to orthogonalize the effect of the treatment variable from the nuisance variables. Our proposed approach provides the first Bayesian alternative to the recent frequentist developments and can incorporate available prior information on the parameters of interest, which plays a crucial role in practical applications. In addition, the proposed approach incorporates uncertainty in orthogonalization in high dimensions instead of relying on a single instance of orthogonalization as done by frequentist methods. We provide uniform convergence results that show the validity of credible intervals resulting from the posterior. Our method has competitive empirical performance when compared with state-of-the-art methods. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026